Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-[(E)-(5-Methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine

Zahid H. Chohan,^a Muhammad Hanif^a and M. Nawaz Tahir^b*

^aDepartment of Chemistry, Bahauddin Zakariya University, Multan-60800, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 4 December 2008; accepted 8 December 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.097; data-to-parameter ratio = 16.5.

In the title Schiff base, C₈H₈N₄S, a condensation product of 5methylthiophene-2-carboxaldehyde and 3-amino-1,2,4-triazole, the dihedral angle between the triazolyl and thienyl rings is $6.44 (14)^{\circ}$. The compound exists as a polymeric chain arising from intermolecular N−H···N bonding.

Related literature

For a related comound, see: Chohan et al. (2009). For the biological properties of such compounds, see: Foroumadi et al. (2003); Manfredini et al. (2000).

Experimental

Crystal data

C₈H₈N₄S $M_r = 192.24$ Orthorhombic, P2₁2₁2₁ a = 7.2570 (7) Å b = 8.9522 (8) Å c = 14.2930 (15) Å

 $V = 928.56 (16) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.31 \text{ mm}^{-1}$ T = 296 (2) K 0.24 \times 0.16 \times 0.14 mm

Data collection

Bruker KAPPA APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\rm min} = 0.928, T_{\rm max} = 0.956$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.097$ S = 1.052206 reflections 134 parameters H atoms treated by a mixture of independent and constrained refinement

5793 measured reflections 2206 independent reflections 1859 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 854 Friedel pairs Flack parameter: -0.02 (10)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N3 - H3n \cdots N1^i$	0.85 (3)	2.12 (3)	2.963 (2)	172 (2)
6		i 1		

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON.

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU. Lahore.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2524).

References

Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA

- Chohan, Z. H., Hanif, M. & Tahir, M. N. (2009). Acta Cryst. E65, 058.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Foroumadi, A., Mansouri, S., Kaini, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.
- Manfredini, S., Vicentini, C. B., Manfrini, M., Bianchi, N., Rutigliano, C., Mischiati, C. & Gambari, R. (2000). Bioorg. Med. Chem. 8, 2343-2346.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2009). E65, o117 [doi:10.1107/S1600536808041494]

N-[(E)-(5-Methylthiophen-2-yl)methylidene]-1H-1,2,4-triazol-3-amine

Z. H. Chohan, M. Hanif and M. N. Tahir

Comment

Compounds derived from triazole possess antimicrobial, analgesic, anti-inflammatory, local anesthetic, antineoplastic and antimalarial properties (Foroumadi *et al.*, 2003). Some triazole Schiff bases also exhibited antiproliferative and anticancer activity (Manfredini *et al.*, 2000). Due to their significant biological applications they have gained much attention in bioinorganic and metal-based drug discovery. In view of its structural and biological importance, we have synthesized (Chohan *et al.*, 2009), series of triazole derived Schiff bases along with the title compound (I). We report herein, its preparation and crystal structure.

In the molecule of title compound, (Fig 1), the bond lengths and angles are within normal ranges. In this molecule 5-methylthiophen ring is attached to 5-membered ring of triazole moiety through the Schiff bond C=N. The dihedral angle between ring A(S1/C1-C4) and B(C7/N2/N3/C8/N4) is 6.44 (14)°. There exist intramolecular as well as an intermolecular H-bonds as given in Table 1. The molecules are connected to each other through intermolecular H-bonds of N-H…N type in a helical way (Fig 2).

Experimental

A mixture of 5-methylthiophene-2-carboxaldehyde (1.09 ml, 0.01 M) and 3-amino-1,2,4-triazole (0.84 g, 0.01 M) in 1:1 molar proportions in methanol (40 ml) was boiled under reflux for 5 h by monitoring through TLC. The reaction mixture was cooled at room temperature and filtered; within an hour a light brown solid product separated from the clear solution. It was filtered, washed with methanol, dried and recrystallized from a mixture of ethanol:methanol (1:1).

Refinement

H-atoms were positioned geometrically, with C—H = 0.96 Å for methyl carbon of thiophene ring and constrained to ride on the parent atom. The coordinates of all other H-atoms were refined. The $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1. *ORTEP-3 for Windows* (Farrugia, 1997) drawing of the title compound, $C_8H_8N_4S$, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dashed lines.

Fig. 2. The partial unit cell packing of (I) (Spek, 2003) showing the interamolecular and intermolecular hydrogen bonding showing that polymeric sheets are formed.

(I)

Data collection

Bruker KAPPA APEXII CCD diffractometer	2206 independent reflections
Radiation source: fine-focus sealed tube	1859 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
Detector resolution: 7.4 pixels mm ⁻¹	$\theta_{\rm max} = 28.3^{\circ}$
T = 296(2) K	$\theta_{\min} = 2.7^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -11 \rightarrow 11$
$T_{\min} = 0.928, T_{\max} = 0.956$	$l = -17 \rightarrow 19$
5793 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.034$	$w = 1/[\sigma^2(F_0^2) + (0.0562P)^2 + 0.0383P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{max} < 0.001$

 $F_{000} = 400$

 $\theta = 2.7 - 28.3^{\circ}$ $\mu = 0.31 \text{ mm}^{-1}$ T = 296 (2) K

 $D_{\rm x} = 1.375 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

Prismatic, light brown $0.24 \times 0.16 \times 0.14$ mm

Cell parameters from 2206 reflections

<i>S</i> = 1.05	$\Delta \rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3}$
2206 reflections	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
134 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 854 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.02 (10)

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.48892 (7)	-0.18020 (5)	0.00175 (3)	0.0512 (2)
N1	0.5269 (2)	0.13362 (16)	0.09627 (10)	0.0456 (4)
N2	0.4898 (2)	0.29617 (16)	0.22417 (10)	0.0498 (5)
N3	0.5397 (2)	0.43946 (17)	0.23930 (11)	0.0502 (5)
N4	0.6332 (3)	0.39225 (19)	0.09806 (13)	0.0659 (7)
C1	0.5665 (3)	-0.0136 (2)	-0.04286 (12)	0.0460 (5)
C2	0.6222 (3)	-0.0303 (3)	-0.13344 (14)	0.0565 (7)
C3	0.6008 (3)	-0.1767 (3)	-0.16735 (14)	0.0562 (7)
C4	0.5306 (3)	-0.2720 (2)	-0.10199 (12)	0.0497 (5)
C5	0.4937 (4)	-0.4350 (3)	-0.11161 (16)	0.0737 (9)
C6	0.5724 (3)	0.1226 (2)	0.00957 (13)	0.0473 (5)
C7	0.5491 (3)	0.27297 (19)	0.13780 (12)	0.0432 (5)
C8	0.6228 (3)	0.4940 (3)	0.16478 (17)	0.0654 (8)
H2	0.663 (3)	0.048 (2)	-0.1784 (19)	0.0678*
Н3	0.629 (3)	-0.210 (3)	-0.2327 (18)	0.0675*
H3N	0.515 (3)	0.488 (3)	0.2891 (17)	0.0602*
H5A	0.52067	-0.48427	-0.05354	0.1103*
H5B	0.57023	-0.47560	-0.16015	0.1103*
H5C	0.36648	-0.45026	-0.12734	0.1103*
Н6	0.621 (3)	0.209 (2)	-0.0237 (15)	0.0567*
H8	0.671 (4)	0.595 (2)	0.1599 (17)	0.0785*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0642 (3)	0.0540 (3)	0.0354 (2)	-0.0070 (2)	0.0078 (2)	-0.0047 (2)
N1	0.0516 (8)	0.0465 (7)	0.0386 (7)	0.0015 (7)	-0.0023 (7)	-0.0011 (6)

supplementary materials

N2	0.0668 (10)	0.0434 (7)	0.0392 (7)	0.0024 (7)	0.0000 (8)	0.0002 (5)
N3	0.0644 (10)	0.0439 (8)	0.0422 (8)	0.0024 (7)	-0.0020 (8)	-0.0053 (6)
N4	0.0895 (14)	0.0554 (10)	0.0529 (10)	-0.0181 (9)	0.0184 (10)	-0.0072 (8)
C1	0.0475 (9)	0.0518 (10)	0.0388 (8)	-0.0018 (7)	0.0027 (8)	-0.0017 (7)
C2	0.0641 (13)	0.0637 (13)	0.0418 (10)	-0.0064 (9)	0.0110 (9)	0.0012 (9)
C3	0.0605 (12)	0.0706 (13)	0.0376 (9)	0.0014 (10)	0.0098 (9)	-0.0096 (9)
C4	0.0515 (10)	0.0573 (10)	0.0404 (8)	-0.0008 (8)	0.0011 (8)	-0.0092 (7)
C5	0.100 (2)	0.0629 (12)	0.0582 (12)	-0.0099 (13)	0.0055 (13)	-0.0160 (10)
C6	0.0521 (9)	0.0499 (9)	0.0398 (8)	-0.0004 (8)	-0.0003 (8)	0.0008 (7)
C7	0.0475 (9)	0.0431 (8)	0.0391 (8)	0.0031 (7)	-0.0022 (8)	0.0003 (7)
C8	0.0827 (16)	0.0504 (11)	0.0630 (13)	-0.0152 (11)	0.0126 (12)	-0.0079 (10)

Geometric parameters (Å, °)

S1—C1	1.7169 (19)	C1—C6	1.432 (3)
S1—C4	1.7220 (18)	C2—C3	1.406 (4)
N1—C6	1.286 (2)	C3—C4	1.364 (3)
N1—C7	1.391 (2)	C4—C5	1.490 (3)
N2—N3	1.350 (2)	C2—H2	1.00 (2)
N2—C7	1.324 (2)	С3—Н3	1.00 (3)
N3—C8	1.318 (3)	С5—Н5А	0.9600
N4—C7	1.355 (3)	С5—Н5В	0.9600
N4—C8	1.321 (3)	С5—Н5С	0.9600
N3—H3N	0.85 (3)	С6—Н6	0.974 (19)
C1—C2	1.365 (3)	С8—Н8	0.97 (2)
S1…N1	3.1295 (15)	N4…H5A ^{vii}	2.5700
S1…C4 ⁱ	3.647 (2)	N4…H6	2.39 (2)
N1…S1	3.1295 (15)	$C1 \cdots N4^{v}$	3.419 (3)
N1…N3 ⁱⁱ	2.963 (2)	C4…S1 ^{viii}	3.647 (2)
N2…N4	2.252 (2)	C8…N2 ⁱⁱⁱ	3.241 (3)
N2…C8 ⁱⁱ	3.241 (3)	C7···H3 ^{vi}	3.03 (2)
N2…N3 ⁱⁱ	3.243 (2)	C7···H3N ⁱⁱ	2.80 (3)
N3…N1 ⁱⁱⁱ	2.963 (2)	H2…N2 ^{iv}	2.83 (2)
N3…N4	2.171 (2)	H2…N3 ^{iv}	2.87 (2)
N3…N2 ⁱⁱⁱ	3.243 (2)	H3…N2 ^{ix}	2.94 (2)
N4…C1 ^{iv}	3.419 (3)	H3····C7 ^{ix}	3.03 (2)
N4…N3	2.171 (2)	H3N…N1 ⁱⁱⁱ	2.12 (3)
N1…H3N ⁱⁱ	2.12 (3)	H3N…N2 ⁱⁱⁱ	2.77 (3)
N2…H8 ⁱⁱ	2.71 (2)	H3N····C7 ⁱⁱⁱ	2.80 (3)
$N2 \cdots H2^{v}$	2.83 (2)	H5A…N4 ^x	2.5700
N2…H3 ^{vi}	2.94 (2)	H6…N4	2.39 (2)
N2…H3N ⁱⁱ	2.77 (3)	H8…N2 ⁱⁱⁱ	2.71 (2)
N3···H2 ^v	2.87 (2)		
C1—S1—C4	92.13 (9)	N1—C7—N4	125.46 (16)
C6—N1—C7	116.76 (15)	N2—C7—N4	114.44 (16)

N3—N2—C7	102.19 (14)	N3—C8—N4	110.7 (2)
N2—N3—C8	110.20 (17)	С1—С2—Н2	128.6 (14)
C7—N4—C8	102.42 (18)	С3—С2—Н2	117.8 (14)
C8—N3—H3N	125.6 (17)	С2—С3—Н3	125.2 (15)
N2—N3—H3N	124.1 (17)	С4—С3—Н3	121.9 (15)
S1—C1—C6	123.72 (14)	С4—С5—Н5А	109.00
C2C1C6	125.52 (19)	С4—С5—Н5В	109.00
S1—C1—C2	110.75 (16)	C4—C5—H5C	110.00
C1—C2—C3	113.4 (2)	H5A—C5—H5B	109.00
C2—C3—C4	112.85 (18)	H5A—C5—H5C	109.00
S1—C4—C3	110.91 (15)	H5B—C5—H5C	109.00
C3—C4—C5	128.07 (19)	N1—C6—H6	120.2 (12)
S1—C4—C5	121.02 (15)	С1—С6—Н6	115.6 (12)
N1—C6—C1	124.19 (17)	N3—C8—H8	124.6 (15)
N1—C7—N2	120.07 (16)	N4—C8—H8	124.7 (15)
C1—S1—C4—C3	-0.12 (18)	C8—N4—C7—N2	-0.4 (3)
C4—S1—C1—C2	-0.28 (18)	C7—N4—C8—N3	0.4 (2)
C4—S1—C1—C6	-179.69 (19)	C8—N4—C7—N1	-178.6 (2)
C1—S1—C4—C5	178.8 (2)	C2-C1-C6-N1	-176.6 (2)
C6—N1—C7—N4	-7.9 (3)	S1—C1—C2—C3	0.6 (2)
C7—N1—C6—C1	177.03 (19)	C6—C1—C2—C3	-180.0 (2)
C6—N1—C7—N2	173.91 (18)	S1-C1-C6-N1	2.7 (3)
C7—N2—N3—C8	0.1 (2)	C1—C2—C3—C4	-0.7 (3)
N3—N2—C7—N1	178.54 (17)	C2-C3-C4-S1	0.5 (2)
N3—N2—C7—N4	0.2 (2)	C2—C3—C4—C5	-178.4 (2)
N2—N3—C8—N4	-0.3(2)		

Symmetry codes: (i) *x*-1/2, -*y*-1/2, -*z*; (ii) -*x*+1, *y*-1/2, -*z*+1/2; (iii) -*x*+1, *y*+1/2, -*z*+1/2; (iv) *x*+1/2, -*y*+1/2, -*z*; (v) *x*-1/2, -*y*+1/2, -*z*; (v) *x*-1/2, -*y*+1/2, -*z*; (v) *x*-1/2, -*y*+1/2, -*z*; (v) *x*-1/2, -

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N3—H3n…N1 ⁱⁱⁱ	0.85 (3)	2.12 (3)	2.963 (2)	172 (2)
С6—Н6…N4	0.974 (19)	2.39 (2)	2.761 (3)	101.7 (15)
Symmetry codes: (iii) $-x+1$, $y+1/2$, $-z+1/2$.				

